Constant Mean

نویسنده

  • L. ANDERSSON
چکیده

Let V be a maximal globally hyperbolic flat n+1–dimensional space–time with compact Cauchy surface of hyperbolic type. We prove that V is globally foliated by constant mean curvature hypersurfaces Mτ , with mean curvature τ taking all values in (−∞, 0). For n ≥ 3, define the rescaled volume of Mτ by H = |τ | Vol(M, g), where g is the induced metric. Then H ≥ nVol(M, g0) where g0 is the hyperbolic metric on M with sectional curvature −1. Equality holds if and only if (M, g) is isometric to (M, g0).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A height estimate for constant mean curvature graphs and uniqueness

In this paper, we give a height estimate for constant mean curvature graphs. Using this result we prove two results of uniqueness for the Dirichlet problem associated to the constant mean curvature equation on unbounded domains. 2000 Mathematics Subject Classification. 53A10. Introduction The surfaces with constant mean curvature are the mathematical modelling of soap films. These surfaces appe...

متن کامل

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

Determination of Exponential Smoothing Constant to Minimize Mean Square Error and Mean Absolute Deviation

Exponential smoothing technique is one of the most important quantitative techniques in forecasting. The accuracy of forecasting of this technique depends on exponential smoothing constant. Choosing an appropriate value of exponential smoothing constant is very crucial to minimize the error in forecasting. This paper addresses the selection of optimal value of exponential smoothing constant to ...

متن کامل

A general halfspace theorem for constant mean curvature surfaces

In this paper, we prove a general halfspace theorem for constant mean curvature surfaces. Under certain hypotheses, we prove that, in an ambient space M, any constant mean curvature H0 surface on one side of a constant mean curvature H0 surface Σ0 is an equidistant surface to Σ0. The main hypotheses of the theorem are that Σ0 is parabolic and the mean curvature of the equidistant surfaces to Σ0...

متن کامل

Structure Theorems for Constant Mean Curvature Surfaces Bounded by a Planar Curve

3 is the boundary of two spherical caps of constant mean curvature H for any positive number H, which is at most the radius of C. It is natural to ask whether spherical caps are the only possible examples. Some examples of constant mean curvature immersed tori by Wente [7] indicate that there are compact genus-one immersed constant mean curvature surfaces with boundary C that are approximated b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008